p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain.
نویسندگان
چکیده
We have previously reported that wild-type p53 can bind single-stranded (ss) DNA ends and catalyze renaturation of ss complementary DNA molecules. Here we demonstrate that p53 can also bind to internal segments of ss DNA molecules via a binding site (internal DNA site) distinct from the binding site for DNA ends (DNA end site). Using p53 deletion mutants, the internal DNA site was mapped to the central region (residues 99-307), while the DNA end site was mapped to the C-terminal domain (residues 320-393) of the p53 protein. The internal DNA site can be activated by the binding of ss DNA ends to the DNA end site. The C-terminal domain alone was sufficient to catalyze DNA renaturation, although the central domain was also involved in promotion of renaturation by the full-length protein. Our results suggest that the interaction of the C-terminal tail of p53 with ss DNA ends generated by DNA damage in vivo may lead to activation of non-specific ss DNA binding by the central domain of p53.
منابع مشابه
The single-stranded DNA end binding site of p53 coincides with the C-terminal regulatory region.
p53 is a transcription factor that binds double-stranded (ds) DNA in a sequence-specific manner. In addition, p53 can bind the ends of single-stranded (ss) DNA. We previously demonstrated that ssDNA oligonucleotides interact with the C-terminal domain of p53 and stimulate binding to internal segments of long ssDNA by the p53 core domain. Here we show that the p53 C-terminal domain can recognize...
متن کاملDistinct functions of POT1 at telomeres.
The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stra...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملPhysical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53
Single-stranded DNA-binding proteins (SSB) form a class of proteins that bind preferentially single-stranded DNA with high affinity. They are involved in DNA metabolism in all organisms and serve a vital role in replication, recombination and repair of DNA. In this report, we identify human mitochondrial SSB (HmtSSB) as a novel protein-binding partner of tumour suppressor p53, in mitochondria. ...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 23 3 شماره
صفحات -
تاریخ انتشار 1995